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Poster Summary

Perspectives

Stimuli
Two pre-recorded solo piano excerpts, 15 minutes each, 
re-rendered acoustically on a reproducing piano.
• Baroque, Bach Goldberg Variations (Glenn Gould)
• Contemporary, Markeas Improv (Alexandros Markeas)

Participants
24 subjects. 22 analyzed: 11 female, mean age 30.52 (SD = 7.5), 
mean years musical training 14.5 (SD = 10.2), normal hearing

Task
Listen to piano excerpts and rate personal liking and perceived public 
liking of the music on a scale from -10 (hate) to 10 (love)

EEG Recording
7 channels (Fpz, Fz, Cz, Pz, Oz, FC1 and FC2), Enobio Neuroelectric 
system with USB connection to MacBook Pro laptop. 500 Hz sampling 
rate, initial reference left mastoid.

ECG Recording
Bluetooth Polar H10 chests strap at 130Hz with one channel located 
centrally just below the sternum. An additional EEG channel was used 
to record ECG at 500Hz from a second location near the 4th 
intercostal space along the left margin of the sternum.

Data Alignment + Acquisition
EEG, ECG, audio onset/offset triggers, and rendered audio were 
synchronized and recorded with Lab Streaming Layer [5]. 

Preprocessing
EEG were cleaned in MATLAB with EEGLAB [6]. Data were band-
passed 0.1– 40 Hz, downsampled to 100 Hz, decomposed with ICA to 
remove ocular artifacts, and re-referenced to the common average.

R peaks were identified and extracted from ECG. RR envelopes were 
created and interpolated to 100 Hz.

Decoding
Linear decoding was carried out using the mTRF Toolbox v2.3 [1,2]. 
EEG was z-scored collectively for each participant. RR envelopes 
were z-scored collectively for each participant. Audio RMS envelope 
and EEG low pass filtered to 10Hz. Lags of -100 – 400 ms were used. 

Three Model Types: EEG alone | EEG + RR env | RR env alone

Evaluation
10-fold leave-one out cross validation was used to estimate model 
performances. Null distributions were created by repeatedly dephasing 
the audio and physiology data. Additional modeling was run with 
simulated physiology data with properties similar to the RR envelopes.

Pearson correlation computed between predicted and actual amplitude 
envelopes for all model types.

Results
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Preliminary results suggest that added ECG can significantly 
improve EEG decoding accuracy, particularly for the 
Contemporary stimuli. However, as only seven EEG channels 
were recorded, the contributions that other channels could have 
made are unknown.

Modeling success may depend on the specific stimuli or the 
consistency of the physiological responses to the stimuli. 
Responses to Contemporary music could be variable, or subjects 
may not engage favorably with Contemporary music.

Low frequency components of EEG produced during speech and 
music listening have been found to track speech more strongly 
than music [7], thus RR envelopes, which are on the order of 1 
Hz, require further investigation and validation.

Future work could investigate if ECG decoding can illuminate 
subjective evaluations of the music, musicianship [8], or the 
processing of high-level musical features like musical phrasing.
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Decoding
“Decoding” is a linear modeling method that maps continuous 
physiological data to the stimulus that generated it, typically audio 
amplitude envelope.

For EEG, the neural response data 𝒓 , with 𝒕	 time points and 𝒏 
channels is lagged, i.e. duplicated at delays 𝝉, and weighted for each 
channel and delay, 𝒈(𝝉, 𝒏), to optimally reconstruct a feature trace, �̂�, 
approximating  the real feature trace, 𝑠, derived from the stimulus [1,2].

�̂� 𝑡 = 	.
𝒏

.
𝝉

𝒓 𝒕 + 𝝉, 𝒏 𝒈(𝝉, 𝒏)

The dimensionality of the response data 𝒓, increases with each lag 
added. -Lagged data introduce future data into the present prediction, 
+lagged data introduce past data into the present prediction

Reconstructed feature traces, �̂�, can be compared by correlation to the 
real feature traces, 𝑠 , to evaluate decoding effectiveness and to 
determine the utility of the feature trace selected or the listener’s state 
of focus [3].

Methods

RR interval

Question
Can ECG RR interval envelope be used to reconstruct the 
amplitude envelope of music and reveal listener engagement? 

Cardiovascular Signals
Electrocardiography (ECG) measures continuous electrical signals 
from the heart. 

Inter-heartbeat (RR) intervals extracted from ECG are mediated by the 
autonomic nervous system and have been shown to change in 
response to music [4]
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For the Baroque Music 
Music envelope could be decoded in (1) the EEG data alone, (2) a 
combination of the EEG and RR interval envelopes, and (3) from the 
RR interval envelopes alone 

RR interval envelopes always improved the modeling accuracy.

For the Contemporary Music
Only EEG + RR data produced a model that could predict the music 
amplitude envelope above the noise floor.

EEG CapECG Belt

Cardiovascular signals during continuous music listening are analyzed 
with traditional electroencephalographic (EEG) decoding methods.

Amplitude envelope of music is more accurately reconstructed from 
cardiovascular signals with EEG than from EEG alone in live listening.

https://github.com/sccn/labstreaminglayer

